
CS 4530: Fundamentals of Software Engineering

Lesson 7.2 Using git in Teams

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Outline of this lesson
1. Review of git basics:

a) clone, commit, push
b) pull, stash
c) branch, fetch, merge

2. How to collaborate using branches.
3. How to collaborate using forks.

2



Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Compare branches and forks on github;
• Explain how branches and forks can be used for 

collaboration;
• Describe the lifetime of a “pull request.”

3



Review: git Basics (1 of 3)
• Using a repo from a server:

1. Clone the repo locally.
2. Perform changes:

• Modify files;
• Add files;
• Delete files.

3. Commit locally
• Creates a new version.

4. Push change back to server.

4

clone

push

commit

SERVER

Single user



Review: git Basics (2 of 3)
• If a change happens on server:

• We can “pull” it over, …
• … as long our repo is consistent.

• If local change not committed
• We can first “stash”,

• (saving our changes)
• Then “pull” to update local repo,
• And then “stash pop”

• (restoring our changes)

• If local change committed
• We will need to “merge” commits.

55

consistent

pull

(change)

SERVER

stash
pop



Review: git Basics (3 of 3)
• Development in a branch:

• “fetch” to update repo;
• Delay merges indefinitely.

• Merge main into branch:
• Update branch to reflect changes;
• Easier sooner.

• Merge into main:
• Use work of branch;
• Best if branch already up-to-date.

6

“main” sometimes 
called “master”



Using branches for collaboration
• Branches can be made by “insiders”:

• Branches can be pushed to the original repo;
• Branches enjoy relative isolation;
• Visible to other developers:

• But usually extended only by a single developer;
• They can be merged in or abandoned.

• Use a github “pull request” to request feedback:
• Alert other developers of a change;
• Courtesy only, since you could merge into main.

7

“pull request” 
is a misnomer here



“Forks” are made by outsiders
• A “fork” is a copy of a repo:

• You don’t change original;
• You can change your copy:

• “push” changes you make.
• Updates must happen through 

local clone pulling from upstream.

• Local clone has two “remotes”:
• “upstream” is original repo;
• “origin” refers to the fork.

• You can’t ”push” to the original!

8

SERVER

fork

push/
pull

pull upstream

“upstream” must 
be defined manually.



“Pull Request” of the Copy
• The owner of the fork requests 

that the owner(s) of the original 
repo “pull” in changes.

• All done on the server 
• (e.g., github).

• Owner of fork should
• Make sure fork is up-to-date;
• Explain the reason for the change 

in the pull request.

9

SERVER Pull request



What to Do With a Pull Request 
• The original owner(s) can

• Examine all the changes;
• Send comments back to the requester;
• Request changes in the fork before approving;
• Approve the request;

• (Approval has no effect (yet) on the repo)
• Close the request;

• (effectively refusing the request).

• Or the pull request can be ignored
• (not always the polite option).

10



Three Ways to Accept Pull Request

11

2

1

2

1

3
2

1

1

2

MERGE SQUASH RE BASE

Normally “squash”
is the best choice.



Branch problems
• Working in a branch helps avoid worrying about 

what’s going on in ”main,” but …
• Delaying merges makes them harder;
• Other developers might depend on your branch,

• Or branch off your branch!

• So, keep branches short and merge back in quickly.
• Or, use the “monorepo” approach:

• Do everything in “main” (no development branches)
(Recommended in SE@Google, see Chapter 16)

12

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch16.html#version_control_and_branch_management


Review: Learning Objectives for this Lesson
• You should now be able to:

• Compare branches and forks on github;
• Explain how branches and forks can be used for 

collaboration;
• Describe the lifetime of a “pull request.”

13



Next steps...
• In our next lesson, we’ll talk about “Code Reviews.”

14


	CS 4530: Fundamentals of Software Engineering���Lesson 7.2 Using git in Teams
	Outline of this lesson
	Learning Objectives for this Lesson
	Review: git Basics (1 of 3)
	Review: git Basics (2 of 3)
	Review: git Basics (3 of 3)
	Using branches for collaboration
	“Forks” are made by outsiders
	“Pull Request” of the Copy
	What to Do With a Pull Request 
	Three Ways to Accept Pull Request
	Branch problems
	Review: Learning Objectives for this Lesson
	Next steps...

